
Rule-Based Runtime Verification

Howard Barringer
Allen Goldberg
Klaus Havelund
Koushik Sen

Overview

 Run-time Monitoring

 About EAGLE

 Enhanced Formal Testing

 Summary

Motivation

 Model checking and Theorem Proving are rigorous
– Not scalable
– Complex

 Testing is scalable and widely used
– Ad hoc
– Lack of coverage

 Combine Formal Methods and Testing ?
– Gain the benefits of both the approaches.
– Avoid the pitfalls of ad hoc testing.
– Avoid the complexity of theorem proving and model checking.

Run-time Verification

 Merge testing and temporal logic specification
– Specify safety properties in some temporal logic.

– Instrument program to generate events.

– Monitor safety properties against a trace of event emitted by
the running program.

 Pros: Scalable

 Cons: Lack of Coverage

test & property

generation

event stream
Implemented

system

under test

instrumentation

di
sp

at
ch

Observer

Model

test

inputs

behavioural

properties

reports

A Model-Based Verification Architecture

Rqmts

Deadlock

Dataraces

instrumentation

Our work on Rqmts Monitoring

 Future time propositional:
– Backwards dynamic programming algorithm

– Forward rewriting algorithm (in Maude)

– “Buchi” automata generation (Giannakopoulou)

– BTT automata generation

 Past time propositional:
– Forwards dynamic programming algorithm

Other Work on Rqmts Monitoring

 MaC Tool (UPenn) – uses past-time interval logic

 Temporal Rover – commercial tool

 Statistics Collection by Finkbeiner et al.

 Debugging Distributed Autonomous Systems by Simmons et al.
(CMU)

 …

So many logics …

 What is the most basic, yet, general specification
language suitable for monitoring?

EAGLE is our answer.

Based on recursive rules over next,
previous and concatenation “temporal”
connectives.

Can encode future time temporal logic,
past-time logic, ERE, µ-calculus, real-time,
data-binding, statistics….

Introducing EAGLE

 Rule-based finite trace monitoring logic

 User defines
– a set of temporal rules

– a set of monitoring formulas

 Monitors evaluated over a given input trace,
on a state by state basis

 Evaluation proceeds by checking facts and
generating obligations

Syntax

Semantics

EAGLE by example: LTL

max Always(Form F) = F /\ _ Always(F) .

min Eventually(Form F) = F \/ _ Eventually(F) .

max EventuallyP(Form F) = F \/ _ EventuallyP(F) .

To monitor the LTL formula _(x>0 _ _ y=3), write

mon M1 = Always(x > 0 -> EventuallyP(y=3)) .

EAGLE by example: data binding

_(x > 0 → _k. k = x /\ _ y = 3)

can be written as

mon M1 = Always(x>0 → let k= x in Eventually(y=k)).

which is rewritten using a data parameterized rule:

min R(int k) = Eventually(y=k) .
mon M2 = Always(x>0 → R(x)) .

EAGLE by example: metric LTL

Timed operators, such as: _[t1,t2]

assume events are time-stamped _ state variable
clock

min TEventuallyAbs(Form F, float t1, float t2)
= clock <= t2 /\

 (F → t1 <= clock) /\
 (~ F → _ TEventuallyAbs(F, t1, t2)) .

min TEventually(Form F, float t1, float t2)
= TEventuallyAbs(F, t1+clock, t2+clock) .

EAGLE by example: statistical logics

Monitor that state property F holds with at least probability p over the
given sequence

min A(Form F, float p, int f, int t) =
 (_Empty() /\ ((F /\ (1 _ f/t) >= p) \/

 (¬F /\ (1 _ (f+1)/t) >= p)))
 \/
(¬Empty() /\ ((F → _A(F, p, f, t+1)) /\ (¬F → _A(F, p, f+1,
t+1))) .

min AtLeast (Form F, float p) = A(F, p, 0, 1) .

EAGLE by example: beyond regular
languages

Monitor a sequence of login and logout events – at no
point should there be more logouts than logins and
they should match by the end.

min Match (Form F1, Form F2) =
Empty() \/

F1 • Match(F1, F2) • F2 • Match(F1, F2)

mon M1 = Match(login, logout)

Some EAGLE facts

 EAGLE-LTL (past and future). Monitoring formula of
size m has space complexity bounded by m2 2m log m

 EAGLE with data binding has worst case dependent
on length of input trace

 EAGLE without data is at least Context Free

 EAGLE logic currently implemented by rewriting as a
Java application

EAGLE: Internal Calculus

Uses four functions

init: Form X Form X Form -> Form
transforms a monitor formula (1st arg) for evaluation, in particular the

primitive _ and _ are replaced by rules Next and Previous with history
parameters introduced to past-time rules

eval: Form X State -> Form
applies the given state to the formula yielding the obligation for the future

update: Form X State X Form X Form -> Form
updates the past time components in the formula (1st arg)

value: Form -> Bool
yields the value of the given formula at the end of monitoring

EAGLE: Internal Calculus – eval - I

eval«true, s» = true

eval«false, s» = false

eval«exp, s» = value of exp in state s

eval«F1 op F2, s» = eval«F1, s» op eval«F2, s»

eval«¬F, s» = ¬eval«F, s»

eval«F1 _ F2, s» = if ¬value«F1» then eval«F1, s» _ F2

 else (eval«F1, s» _ F2) \/ eval«F2, s»

EAGLE: Internal Calculus – eval - II

eval«Next(F), s» = update «F, s, null, null»

Evaluation of a next time formula Next(F) yields the obligation to evaluate F in
the next state. Note that any past time args are updated by application of
update

eval«Previous(F, past), s» = eval«past, s»

Since past is the (possibly partial) evaluation of F from the previous state, the
evaluation of a previous time formula must just re-evaluate past in the
current state

The cases of eval for rule definitions are synthesised from the rules

EAGLE: Internal Calculus – eval - III

Given rule: {max|min} R(Form f, T p) = B
a call: R(F, P)
is transformed to: R(_b.H(b), P)

where H is the transformed version of B with formal formula parameters f replaced by
the transformed actual formulas F, the actual data parameters P appear as
argument to R and any recursive calls to R with the same actual formula arguments
are replaced by the recursion variable b

E.g.
Always(Eventually(x>0))

is transformed to:
Always(_b1. Eventually(_b2 . (x>0) \/ Next(b2))) /\ Next(b1))

Then the evaluation is synthesised according to:

eval«R(_b.H(b), P), s» = eval« H(_b.H(b))[p _ eval«P, s »], s»

the recursion is unfolded once, formal data parameters are substituted by the
evaluated actuals, and then the whole re-evaluated.

EAGLE: Internal Calculus – eval - III

Given rule: {max|min} R(Form f, T p) = B
a call: R(F, P)
is transformed to: R(_b.H(b), P)

where H is the transformed version of B with formal formula parameters f replaced by
the transformed actual formulas F, the actual data parameters P appear as
argument to R and any recursive calls to R with the same actual formula arguments
are replaced by the recursion variable b

E.g.
Always(Eventually(x>0))

is transformed to:
Always(_b1. Eventually(_b2 . (x>0) \/ Next(b2))) /\ Next(b1))

Then the evaluation is synthesised according to:

eval«R(_b.H(b), P), s» = eval« H(_b.H(b))[p _ eval«P, s »], s»

the recursion is unfolded once, formal data parameters are substituted by the
evaluated actuals, and then the whole re-evaluated.

Example Execution

Specification:

max A(Term f) = f /\ @ A(f) .

min E(Term f) = f \/ @ E(f) .

monitor M = A({x} > {0} _ E({x} == {0})).

 Trace:

x=1

x=2

x=0

x=3

_(x > 0 _ _ x = 0)

Trace Evaluation

_(x > 0 _ _ x = 0)

Formulas: [A(((x > 0) /\ E(((x == 0) ++ (x == 0) /\ Next(E(rec)) ++ Next(E(rec)))) /\ Next(A(rec)) ++ (x
> 0) /\ Next(A(rec)) ++ Next(A(rec))))]

state = {x=1}
_ x = 0 °_̧(x > 0 _ _ x = 0)

E(((x == 0) ++ (x == 0) /\ Next(E(rec)) ++ Next(E(rec)))) /\ A(((x > 0) /\ E(((x == 0) ++ (x == 0) /\
Next(E(rec)) ++ Next(E(rec)))) /\ Next(A(rec)) ++ (x > 0) /\ Next(A(rec)) ++ Next(A(rec))))

state = {x=2}
_ x = 0 __(x > 0 _ _ x = 0)
A(((x > 0) /\ E(((x == 0) ++ (x == 0) /\ Next(E(rec)) ++ Next(E(rec)))) /\ Next(A(rec)) ++ (x > 0) /\

Next(A(rec)) ++ Next(A(rec)))) /\ E(((x == 0) ++ (x == 0) /\ Next(E(rec)) ++ Next(E(rec))))

state = {x=0}
_(x > 0 _ _ x = 0)

A(((x > 0) /\ E(((x == 0) ++ (x == 0) /\ Next(E(rec)) ++ Next(E(rec)))) /\ Next(A(rec)) ++ (x > 0) /\
Next(A(rec)) ++ Next(A(rec))))

state = {x=3}
_ x = 0 __(x > 0 _ _ x = 0)
E(((x == 0) ++ (x == 0) /\ Next(E(rec)) ++ Next(E(rec)))) /\ A(((x > 0) /\ E(((x == 0) ++ (x == 0) /\

Next(E(rec)) ++ Next(E(rec)))) /\ Next(A(rec)) ++ (x > 0) /\ Next(A(rec)) ++ Next(A(rec))))

Warning: Property M violated.

Correctness of EAGLE calculus

Theorem:

s1,s2,…sn, 1 _D F

iff
value(eval(…eval(eval(init(F,null, null), s1), s2)…, sn)) = true

for all state sequences s1..sn and formulas F

EAGLE: Implementation - I

 Initial implementation as a Java application

 Two phases:
– System compiles the rule and monitor

specification file to generate a set of Java classes,
one for each rule and monitor

– System then compiles the generated class files to
Java bytecode and runs the monitoring engine on
a given input trace

EAGLE: Implementation - II

 For efficiency, we use the propositional decision of
Hsiang, where formulas are represented in Exclusive
Or normal form, which is exclusive or of conjuncts.

 We use the following rewrite rules:
F /\ F = F .

 false /\ F = false .
 true /\ F = F .
 ¬ F = true _ F .
 false _ F = F .
F1 /\ (F2 _ F3) = (F1 /\ F2) _ (F1 /\ F3) .
F1 \/ F2 = (F1 /\ F2) _ F1 _ F2 .

EAGLE interface

class Observer {

 Monitors mons;

 State state;

 eventHandler(Event e){

 state.update(e);

 mons.apply(state);

 }

}

class State {

 int x,y;

 update(Event e){

 x = e.x; y = e.y; }

}

class Monitor {

 Formula M1, M2;

 apply(State s){

 M1.apply(s);

 M2.apply(s); }

}

class Event {

 int x,y;

}

e1 e2 e3 …

User defines

these classes

Summary

 EAGLE is a succinct but highly expressive finite trace monitoring logic

 EAGLE can be efficiently implemented, but users must remain aware of
expensive features

 Demonstrated one use by integration within a formal test environment,
showing the benefit of novel combinations of formal methods and test

 EAGLE can reach parts model checking can’t

 EAGLE is almost an executable logic – can handle very limited form of
action in current version

Future Work

 Optimisation of implementation – especially regarding partial
evaluation

 Support user-defined surface syntax

 Associate actions with formulas – towards aspect oriented
programming??

 Consider integration of EAGLE with algebraic specs

 Incorporate automated program instrumentation

 Fly EAGLE over

 Consider Economic EAGLE – apply it to streams of economic data

EAGLE – Internal Calculus -
update

update«true, s, Z, b» = true
update«false, s, Z, b» = false

update«exp, s, Z, b» = exp

update«F1 op F2, s, Z, b» = update«F1, s, Z, b» op update«F2, s, Z, b»

update«¬F, s, Z, b» = ¬update«F, s, Z, b»

update«F1 _ F2, s, Z, b» = update«F1, s, Z, b» _ F2

update«Next(F), s, Z, b» = Next(update«F, s, Z, b»)

update«Previous(F, past), s, Z, b» = Previous(update«F, s, Z, b», eval«F, s»)

